3GPP TSG-WG SA2 Meeting #163
S2-2406477
Jeju, Korea, May 27 - 31, 2024

Source:
Lenovo, Toyota Motor Corporation
Title:
KI#2 Update of Solution 15: Support for vertical federated learning: Model Training and Inference 
Document for:
Approval

Agenda Item:
19.15
Work Item / Release:
FS_AIML_CN / Rel-19

Abstract: This contribution update Solution 15 in TR 23.700-84 to make use of contribution weights for VFL client selection.
1. Introduction

The following points are resolved:

-
Clarify that the assumption is that VFL Server and Clients are the same for Training and Inference.

-
Align terminology with Section 3.1

-
Clarify that the ADRF stores details of the model such as clients used during training, contribution weight of each client

-
Clarify in the inference procedure that the VFL server performs the aggregation of inference results 

Also solution 15 introduce a concept of contribution weigh to improve VFL inference by taking into account the contribution weights from each VFL client while computing the aggregate inference output. This concept of contribution weigh can be also applied to the VFL client selection before the training and inference process. If we select the VFL clients with high contribution weights for VFL, the training process may converge faster and the accuracy of inference may also be improved. 
2. Proposal

It is proposed to capture the following changes to TR 23.700-84 v0.3.0.

* * * * Start of first change * * * *

6.15
Solution 15: Support for vertical federated learning: Model Training and Inference

6.15.1
Description

Editor's note:
This clause will describe the solution principles and architecture assumptions for corresponding key issue(s). Sub-clause(s) may be added to capture details.

Vertical federated learning or feature-based federated learning is applicable to the cases that two data sets share the same sample space but differ in feature space.
To support model training using federated learning the following definitions are used:
-
VFL server: A function that manages the VFL procedures. Selects VFL participants (VFL clients) for model training and carries out inference.
-
VFL active participant: A VFL function that owns part of an ML model for an analytic ID and knows the labels for the ML model. The active participant is the main function for training an ML model for an analytic ID. The VFL server acts as a VFL active participant during training.
-
VFL client: A VFL function that provides intermediate results during training and inference.
-
VFL passive participant: A VFL function that owns part of an ML model for an analytic ID but does not know the labels of the ML model but is able to collect local data for one or more features. A VFL client acts as a passive participant during training
A model training function supporting VFL may support a combination of the functions above (e.g. support both VFL server and VFL active participant functions). The VFL server and Active Participant are part of the same MTLF. 
The VFL server, Active Participant, Passive participant are all logical functions of the MTLF.


In order to support VFL, all parties participating in the VFL process must have aligned samples. Feature alignment may also be needed. Such alignment of samples (and features) is beneficial to happen before the VFL process start in order to avoid wasting resources in case during FL process it is determined that alignment of samples is not possible.

The main steps of the VFL process can be divided into the following steps:

1.
Sample (and Features) alignment.

2.
Coordinating/Controlling the VFL process.

3.
Coordinating/Controlling distributed inference.

The procedure described below support VFL between NWDAFs and VFL between AF and NWDAF. In the latter case the AF acts as a VFL Server and may also be the Active Participant.

* * * * Second change * * * *

6.15.2.2
VFL training procedure

After the alignment is complete the VFL active participant coordinates the VFL training process. The task of the VFL active participant during the training process are proposed to be:

-
Train the model containing the label data based on intermediate values

-
Provide Gradient/Losses to Passive Participants

-
Determine contribution weights from each VFL participant (which are necessary for inference) taking into account:

-
The size of local data available in each participant.

-
The importance of the feature. For example, for a model trained for Service Experience Analytics the Intermediate results provided by a VFL passive participant related to Features available at an AF have more importance than Intermediate Results provided by a VFL passive participant related to Features available at other NFs.

-
The participation in the VFL process during VFL iterations. For example, some VFL participants may not provide an intermediate value during the VFL iteration which makes their local model less accurate.

-
These contribution weights may be part of the model algorithm used by the Active Participant.

NOTE:
How the contribution weights are calculated is MTLF implementation specific.

The procedure for a VFL process is shown below:


[image: image1.emf]VFLPassive participant(Model B, no label)VFLPassive participant(Model C, no label)Data ProducerLocal Data, Feature 2Data ProducerLocal Data, Feature 14b.Train Model and get intermediate value (B) based on its local data. As it has no label sends intermediate result to label owner7. Gradient/Loss8b. Update model B 5b. Intermediate value (B)VFL Server/Active Participant(Model A with Label)Data ProducerLocal Data, Feature 32. Determine to participate in the FL process3. Based on the initial selection determines first contribution weights and assigns VFL process ID4c.Train Model and get intermediate value (B). As it has no label sends intermediate result to label owner5c. Intermediate value (C)6. Computes Gradients/Loss using Label4a Train Model and get intermediate value (A) based on its local data8a. Update model A8c. Update model C ConsumerAnLF1. Request ML model11. ML model response9. Updates contribution weights from each participant10. Repeatiteration


Figure 6.15.2.2-1: Procedure for model training after sample/feature alignment

1.
A consumer (e.g an NWDAF supporting AnLF) requests a trained ML model for supporting derivation of analytics (e.g. DN performance analytics) and includes the Analytics ID and/or Model ID of the trained model needed.

2.
The VFL server determines vertical federated learning and selects VFL participants and performs sample and feature alignment as required

3.
Based on the selected VFL participants the VFL active participant identifies initial contribution weights from each passive participant. The contribution weights may based on the importance of the features and/or the size of the data available by each active participant. The VFL active participant may re-selects VFL participants based on the contribution weights, e.g. excludes the VFL participants with low contribution weights. A VFL process ID is also assigned for the training process so that all VFL participant associate the exchange of VFL related messages (including the VFL process ID) to the single VFL process initiated by the VFL server and/or active participant.
NOTE:
How to select VFL participants based on contribution weights is implementation specific.
4.
Each participant in the VFL process trains their model using the available data (features) and derives an intermediate value (steps 4a, 4b, 4c)

5.
The intermediate value from each participant is sent to the VFL Active Participant.

6.
The VFL Active participant computes the gradient/loss based on the intermediate values received. The gradient/loss may be an aggregate value based on all intermediate values received or a gradient/loss value per VFL passive participant.

7.
The gradient/loss is sent to each passive participant or active participant

8.
Each VFL active/passive participant updates their ML model using the gradient/loss and further input data (step 8a, 8b, 8c)

9. After step 8 several iterations of steps 4 to step 8 takes place until the VFL active participant determines that the ML model has been trained with the confidence level requested by the ML model consumer.

10.
After several VFL iterations the VFL Active participant updates the contribution weights from each passive participant e.g. based on the number of times feedback (i.e. intermediate values) have been provided or feedback provided within a time limit, by each VFL passive participant, gradient/loss estimation on per passive participant.

11.
Once the ML model is trained the VFL Active participant indicates to the ML model consumer that the trained ML model is available. In the response the following may be included:

-
Addresses or NF ID of each VFL participant and their contribution weights

-
Address of the VFL server

-
Address of the VFL active participant

The ML model of the Active Participant and each Passive Participant may also be stored at the ADRF. Information that is stored in the ADRF as part of the Active Participant model is: The VFL process ID, a list of NF IDs that were used as clients during training and their corresponding contribution weights during the training process.

* * * * Start of third change * * * *

6.15.2.3
Distributed Inference

Once a model consumer (i.e. an AnLF) is informed that the a model is trained using VFL, the consumer sends a inference request to the VFL server. The VFL server sends inference requests to each VFL participant and aggregates the received result to derive an aggregate inference output. The VFL active participant takes into account the contribution weights of each participant when deriving the aggregate inference output.


The procedure for inference is shown below:




[image: image3.emf]4. Inference Request(analytic ID, filters, VFL process ID)VFLPassive participant(Model B)VFL server(Model A with Label)NRFNWDAFAnLF1. Analytics Request(Analytic ID, filters)VFLPassive participant(Model C)ADRF2. Identifies ML model and determines ML model is distributed. Retrieves ML model details locally or from NRF or ADRF including a list of MTLF participants, the MTLF having the labels and/or the MTLF server3. Inference Request(analytic ID, filters)6. Intermediate result7. Derives inference based on intermediate results and knolwedge of contribution weights from each participant8. Inference response(analytic ID, filters,Output data)Local Data, Feature 2Local Data, Feature 15a. Local computation using Model A and Local Data5b. Local computation using Model B and Local Data5c. Local computation using Model B and Local DataLocal Data, Feature 39. Prepares analytic output data using inference data10. Analytics Response(Analytic ID, filters)


Figure 6.15.2.3-1: Distributed Inference when ML model is trained using VFL

1.
An NWDAF supporting AnLF receives a request for analytics (e.g. Observed Service Experience Analytics) and includes analytics ID and analytics filters as specified in TS 23.288 [5].

2.
The AnLF identifies the ML model needed to derive analytics and determines distributed inference is needed. The AnLF may obtain this information by interfacing with the NRF or via previous interaction with a MTLF acting as a VFL server (the VFL server that trained the ML model).

3.
The AnLF sends an Inference Request to the VFL server. The AnLF includes the Analytic ID (e.g. Observed Service Experience), analytics filters (e.g. target UEs, service area, slice information, application information, contribution weight information, etc). The contribution weight information may be used by the VFL server to select VFL clients for inference. The Inference Request may be a subscription request (i.e. provide feedback periodically) or a one-time request.

4.
The VFL server sends an Inference Request to the VFL clients

5.
Each VFL participant identifies the local ML model linked to the VFL training process (based on the VFL process ID) and computes an inference output using its local data (step 7a, 7b, 7c)

6.
The Inference output (or intermediate result) from each participant is sent to the VFL Active Participant.

7.
The VFL Server computes an aggregate inference output taking into account the contribution weights from each participant.

8.
The VFL Active participant prepares an inference response and includes output data to the AnLF.

9.
The AnLF prepares Analytic Output data taking into account inference information

10.
The result is sent to the Analytics consumer.


* * * * End of changes * * * *
4. Inference Request
(analytic ID, filters, 
VFL process ID)
VFL
Passive participant
(Model B)
VFL server/
Active Participant
(Model A with Label)
NRF
NWDAF
AnLF
1. Analytics Request
(Analytic ID, filters)
VFL
Passive participant
(Model C)
ADRF
2. Identifies ML model and determines ML model is distributed. Retrieves ML model details locally or from NRF or ADRF including a list of MTLF participants, the MTLF having the labels and/or the MTLF server
3. Inference Request
(analytic ID, filters)
6. Intermediate result
7. Derives inference based on intermediate results and knolwedge of contribution weights from each participant
8. Inference response
(analytic ID, filters,
Output data)
Local Data,
 Feature 2
Local Data, 
Feature 1
5a. Local computation using Model A and Local Data
5b. Local computation using Model B and Local Data
5c. Local computation using Model B and Local Data
Local Data,
 Feature 3
9. Prepares analytic output data using inference data
10. Analytics Response
(Analytic ID, filters)



4. Inference Request
(analytic ID, filters, 
VFL process ID)
VFL
Passive participant
(Model B)
VFL server
(Model A with Label)
NRF
NWDAF
AnLF
1. Analytics Request
(Analytic ID, filters)
VFL
Passive participant
(Model C)
ADRF
2. Identifies ML model and determines ML model is distributed. Retrieves ML model details locally or from NRF or ADRF including a list of MTLF participants, the MTLF having the labels and/or the MTLF server
3. Inference Request
(analytic ID, filters)
6. Intermediate result
7. Derives inference based on intermediate results and knolwedge of contribution weights from each participant
8. Inference response
(analytic ID, filters,
Output data)
Local Data,
 Feature 2
Local Data, 
Feature 1
5a. Local computation using Model A and Local Data
5b. Local computation using Model B and Local Data
5c. Local computation using Model B and Local Data
Local Data,
 Feature 3
9. Prepares analytic output data using inference data
10. Analytics Response
(Analytic ID, filters)



VFL
Passive participant
(Model B, no label)
VFL
Passive participant
(Model C, no label)
Data Producer
Local Data,
 Feature 2
Data Producer
Local Data, 
Feature 1
4b.Train Model and get intermediate value (B) based on its local data. As it has no label sends intermediate result to label owner
7. Gradient/Loss
8b. Update model B
5b. Intermediate value (B)
VFL 
Server/Active Participant
(Model A with Label)
Data Producer
Local Data, 
Feature 3
2. Determine to participate in the FL process
3. Based on the initial selection determines first contribution weights and assigns VFL process ID
4c.Train Model and get intermediate value (B). As it has no label sends intermediate result to label owner
5c. Intermediate value (C)
6. Computes Gradients/Loss using Label
4a Train Model and get intermediate value (A) based on its local data
8a. Update model A
8c. Update model C
Consumer
AnLF
1. Request ML model
11. ML model response
9. Updates contribution weights from each participant
10. Repeat
iteration



